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Modeling of General Constitutive
Relationships in SCN TLM

Leonardo R. A. X. de Menezes, Member, IEEE, and Wolfgang J. R. Hoefer, Feliow, IEEE

Abstract— The modeling of general constitutive relationships
in SCN (symmetrical condensed node) TLM is presented. The
technique consists of decoupling the impulse scattering at the
nodes from equations describing the medium by using equivalent
node sources with state-variable formulation of the constitutive
relationships. The procedure requires few modifications of TLM.
Numerical examples are presented.

1. INTRODUCTION

N THE BASIC TLM formulation, dielectric permittiv-

ity and magnetic permeability are modeled by open and
short circuited stubs which are connected to the nodes; the
characteristic admittance of the stubs is a function of the
constitutive parameters [1]. This method is very robust and
most appropriate when and are constants. However when the
material constitutive parameters are frequency dispersive and
nonlinear, the representation by hard-wired stubs becomes
computationaly difficult and uneconomical because a modi-
fication in time of the stub admittances leads to a modification
of the impulse scattering matrix of the node.

A better way is to decouple the impulse scattering at
the nodes from the equations describing the behavior of the
medium by representing the latter by a differential equation
or equivalent lumped element network and connecting it to
each node by a transmission line of infinitesimal length and
characteristic admittance equal to the driving point admittance
of the node [2]-[4].

The procedure presented in this paper is an efficient TLM
representation of arbitrary constitutive relationships. Using
decoupled scattering matrices with equivalent node sources
(Thevenin and Norton equivalents of the node). the constitutive
equations are expressed in a generic formulation allowing the
inclusion of arbitrary medium behavior in TLM models. The
resulting equations are solved with the state-variable approach.

II. THEORY

This section is divided into four parts. The first describes
the modeling of arbitrary dielectric and magnetic materials
in two-dimensional (2-D) shunt and series TLM networks. In
the second part, the method is extended to three-dimensional
(3-D) SCN TLM. In the third part, the networks describing
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Fig. 2 Two-dimensional TL.M shunt node N2

the medium behavior are formulated in terms of equivalent
node sources, and in the fourth part the resulting differential
equations are expressed and solved using the state-space
approach.

A. Two-Dimensional TLM Formulation

General isotropic materials can be modeled in 2-D-TLM by
reactively loading each node of the network. As mentioned
above, the reactive load can be either modeled by a reactive
stub (Fig. 1) or by a reactive lumped element network (Fig.
2). The latter formulation will now be given for general
nondispersive linear media, for the sake of simplicity.

Since the characteristics of shunt and series-connected TLM
networks are related to each other by duality. we will only
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derive the formulation for the shunt case and simply state the
analogous results for the series case.

In the shunt connected TLM cell the reactive network across
the node models the polarization of the medium in the presence
of an electric field, and the current flowing through it is the
polarization current. The equations relating this current to the
electric field describe the dielectric response of the medium.

Maxwell’s second curl equation in two dimensions (8/dy =
0)

OH, OH, OF
B o e @
is modeled by the shunt type 2-D-TLM network as
01, Oi, Ov
—~—2 _ 22 (2 _v 2
9z an - Ot G, @
with the equivalences
ti,=—-Hy, i,=H, v,=FE,
e =20 € =2C)+ ()

where Cj is the capacitance per unit length of the link lines.
For a square cell with Az = Az = Althe total displacement
current is thus

Ovy Iy
at ot
where ¢4 is the total displacement current, ¢4, is the displace-
ment current in vacuo and i, is the polarization current in the
medium.

The equivalence between

g = a0 + 1p = 2CpAl + C,Al 3)

eoer = €o(1+ x) = e[l + (e — 1)]

and

C
2Cy + Cp = 2Cy (1 + E-Cp-j—o)

yields with ¢¢ = 20
Cp = 200)( = 200(6,« - ].)

obtaining for the polarization current in (3)

ip = 2Co(cr — 1)Al%. @)
Furthermore
_ [ Co _ Yo _ YoAt
OO = —I_/(;V L[]C(] = ? = Al (5)

where Ly and Yy are the inductance per unit length and the
characteristic admittance of the link lines, respectively, At is

the timestep, and ¢ the speed of light (on the link lines). Hence ,

c ¢ ot c ot ©

where p, is the normalized polarization

o YAl 8
i ZQYON( po 1) (2___0 l)_pa

py = Py/eo.

The shunt reactance connected to the node is usually de-
scribed by a current-voltage relationship. In order to connect

it with the scattering mechanism in the TLM network, the total
voltage and current across the reactance must be expressed in
terms of incident and reflected voltage impulses. To this end,
the shunt reactance is connected to the node via a transmission
line of infinitesimal length and characteristic admittance Y. In
order to avoid multiple reflections on this line, Y, is matched
to the driving point admittance of the node, i.e. Y, = 4Y5,
where Yy is characteristic admittance of the link lines.

The voltage and current across the shunt reactance can thus
be related to the voltage impulses incident and reflected at the
node on this transmission line as follows:

. 7
'Uy _vey + Uey

ip = 4Yo(vp, — vgy)- )
The scattering matrix of the node is
vi1” -3 1 1 17[n]" [l
I R o I e
i 1 1 1 =31 vy Vey
and the reflected voltage v, is calculated as
vp, = 2(vf + vl + vl + vh). )

Therefore, the incident voltage v};y used in (8) is calculated
using (9) with (7) and (6).
In the series node case, the decoupled scattering matrix is

v " 3 1 1 -171mq’
Vg _1 1 3 -1 1 Vs
vs| 4|1 -1 3 1 v3
Vg4 -1 1 1 3 Vyq
-1 00 07[vm]"
1|0 10 0 {um
40 01 O Vm,
0 0 0 —-1] Lv,Jd
Vp = (=01 + 03 + 05— v}). (10)
The current and voltage over the node are defined as
Umag(t) = vﬁn(t) + an(t)
, vl () — v (1)
i(t) = =0 an
and the magnetization vector is
ZoAlN d
ma, =12 e 12
mns(®) = (2250) L) (12)
where (in the linear nondispersive case) m(t) = (u, —

1)i(¢t) is the normalized magnetization vector, Umag(t) is the
magnetization voltage and v, (¢), v}, (t) are the reflected and

incident voltages at the input port of the network modeling
the magnetic behavior of the medium.
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B. Obtention of the SCN Formulation
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[6], with the same numbering scheme used in [7]

The SCN formulation is obtained by combining 2-D shunt 0T =g (t) — Zpin(t) — vty UL = va(t) + Zrig(t) — vh(2)
and series nodes [6]. These nodes are decoupled from the P a() = Zoig () — 0 = va(t) + Zoiy (t) — o}
medium using the procedure described in Section II-A. The Ui = Ve ”"’%y 1222 U2T_ Va rly 9 l
resulting medium constitutive equations are vg =v2(t) — Zpiy(t) —vip Vio = v:(t) + Zriy(t) — vg

vy =vy(t) + Zriz(t) =iy v7 =02(t) — Zria(t) — vs
A (QYOAZ) dp. . _ <2Z0Al) dm., v1y =y (t) — Zpi () — vy vy = vy(t) — Zpia(t) — vg
pola c dt mags c dt 'Ug = U’ll(t) + Zr'lx(t) — Ui 'U;‘z = ’U_r(t) + ZTLz(t) — U;_
Al Al
px(t) :PT(t)égg mu:(t) = Mx@)? (15)
o <{) fOAg)% Doy = <2Z0Al>dmy with Y, /Yy = Z,./Zy = 4 and
poly — | « magy —
N N ve(t) = (03(1) + (1) + 94(0) + via(0)) /4 + 2, (1)
py(t) = Pz(t)‘égg my(t) = My(t)”z“ vy (1) = (v3(t) + Vi(t) + vg(t) +v11(2)) /4 + vey (t)
_ (,YoAL\ dp. _ (2ol dm v(t) = (vs(t) + vg(t) + vr(t) + Uio('f))/‘l + ve, (1)
teols T\ ST Ty Tmese T o )@ iz (t) = (vi(t) — vg(t) + 03 (1) — v§ (1)) — v, ())/4
Al Al iy(t) = (vg(t) — va(t) + vg(t) — vig(t)) — vy, (1)) /4
€0 i-(t) = (vi(t) — v3(t) + via(t) — 014 (1)) — mz(t))/4' (16)
tpole = Y. ('Uéz - ’U;I Vg = va + /Ué’.t .. .
The conditions (15) to (16) can be expressed in the system
Px :pz(vvw Uy Vs LJL»ly«Z ) ' ' '
ipoly = Yr(vey = vey) Uy = voy + gy [v"] = [S]lv'] + 3lvi]  [vg] = [T][v'] (17)
Py =Pz (Vs 0y, U3ty Ty i) where, as shown in (18) and (19) at the bottom of the page,
tpole = V{0l —vi) w. =l ok, and
Pe =Po(ve, Uy, Ve bt ) (0] = (oL oA s 0T )
v =u,, .+ e = (00, — v )% ; e e e
magx m m x ma ™mI r [U;] — [4vegg4vey4v51 _ ,Urmw . v:m/ . U:n:]t (20)
My =M (Vy, Uy, Vs, g, by, 1) .
Umagy = Uy + Uy 1y = (Ul = Vi, )/ Zo and the subscript ¢ denotes the transpose vector.
o The reflected voltages v], and v] are calculated as follows:
My =My (Vn, Vyy Vzy tp By, 1)
Vmagze = Vpop F Upnee 20 = (V00 = Vs )/ Zn Vep = 5 (V1 + 05+ v +0ly)  vn, = (vh — vE + vh — vh)
M@ =M (Vg Uy, Vs, b, 1y G (14) vl = 5(vs +vi+ vk +viy) v, = (vg — vh + vg — i)
v, = 50k +vg + vy +0lg) v, = (v) — vh — viy + v1y).
the reflected voltages on branches 1-12 are calculated using 2D
r 0 1 1 o0 o0 o 0 0 1 0 -1 —2}
1 0 o o o0 1 0 0 -2 -1 0 1
i1 o0 o 1 o0 O 0 1 0o 0 -2 -1
6o o 1 o0 1 0 -1 -2 0 O 1 0
0 0 0 1 0 1 -2 -1 0 1 0 0
1|0 1 0 0 1 0 1 0 -1 -2 0 0
S1=%10 0o 0o 1 -2 1 0o 1 0 1 0 o0 (18
0 0 1 -2 -1 0 1 0 0 0 1 0
1 -2 0 0 0 -1 0 0 0 1 0 1
0 -1 0 0 1 -2 1 0 1 0 0 0
-1 0 -2 1 o0 o0 O 1 0 0 0 1
-2 1 -1 0 0 0 0 0 1 0 1 0]
m 1t o0 0 0o 00 0 1 0 0 1
6 o 1 1 0 o0 1 0 0 1 O
100 0 0 1 1T 1 0 0 1 0 0
71 =1 oo 0 1 -101-10 0 0 O 9
o -1 0 0 0 1.0 0 1 -1 0 O
(1t 0 -1 0 0 O 0 0o 0 0 1 -1
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Fig. 3. Norton equivalent source of the node (dielectric behavior).

The link between the incident and reflected vectors given
in (20) is obtained by (13) and (14).

C. The Equivalent Node Sources

The disadvantage of the substitution of (14) into (13) and
subsequent discretization of the resulting expression is the loss
of flexibility of the constitutive relationships modeling, since in
this approach the final discretized expression will be different
according to the medium equations. Therefore, it is important
to deduce a robust solution procedure that enables (13) to be
used independently of the constitutive equation. This is done
considering the Norton and Thevenin circuit equivalent of the
node as sources connected to the networks.

The voltage and current on the input port of each network
can be expressed as

1) Shunt network:
ipol(t) = 2Y 0 (t)
2) Series network:

Vinag(t) = 22,0, (8) = Zpi(t)  vin(t) =

—Yu(t) vi(t) =wv(t) —vi(t). (22)

U (2))-

(23)

These equations can be rearranged and substituted into (13)
resulting in

—(4i(t)—

is(t) =2V, (t) = Yﬂ% ip(t) + Y, u(t)

va(t) = 22,07, (t) = zaildm@y+zqw 24)

The representation of (24) in the equivalent circuit form for
the polarization is shown in Fig. 3.

Applying the same procedure to all directions, the equivalent
current sources are obtained from the polarization current 7,01
and the total voltage across the node v(t), while the equivalent
voltage sources are deduced from the magnetization voltage

Umag and total current over the node i(t)

fualt) = 20T, (1) = 800 (1) = 3 epa(0) + v ()
iy (1) =260, (1) = 80, (0) = 230 Ty () + 4oy 8
iun () = 2,00, () = 80T, (8) = 22 pa(8) + 40 (1)
bun () = 22,00 (1) = B0 (6) = 2o () + (0
iy (£) = 22,000 (8) = 80 (1) = 23 Sy (8) + 4y (0

2Al d

= 8”77;1z(t) =

¥ T m(t) + 4i,(t).

(25)

P52 (t) =2Z,u;, (1)

The sources are calculated at each timestep by

isa(t) = 2(vi(8) + vh(E) + vh(2) + vi2(?))
isy(t) = 2(v5(t) + vi(t) + va(2) + v11(¢))
i (t) = 2(vh(t) + v(t) + v3(t) + vio(t))
Vea (t) = 8(vh(£) — vE(t) + v(t) — vE(?))
Vsy(t) = 8(vg(t) — v3(t) + v§(t) — vig(t))
Vsx(£) =8(vi(t) — v3(t) — via(t) +011(2).  (26)

The solution of (26), (25), and (15) will result in the re-
flected voltages in lines 1-12. The propagation between nodes
is not affected. The incident voltages (20) can be calculated
using the results from (25) substituted into (14). This procedure
is applicable to all kinds of constitutive relationships. The
adaptation to usual TLM programs, [7], is done by setting
Yo=Y, =Y., = Z, = Zy = Z, = 4, obtaining the
reflected voltages for the stubs, using (25) and (14) to obtain
the incident voltages from the stubs, and then calculating the
reflected voltages in branches 1-12 with the scattering matrix
(18).

D. The State-Variable Approach

The use of equivalent node sources allows the solution of
the network using nodal or Tableau analysis, [9]. Therefore,
a SPICE circuit simulator could be used to solve the network
at all nodes at each timestep. The problem of this approach
is the need to formulate an equivalent circuit of the medium.
Although this may be an easy task for most linear dispersive
isotropic materials, that is certainly not the case for an arbitrary
constitutive relationship.

However, the state-variable formulation of the constitutive
relationship equations avoids this problem. In this approach,
the use of equivalent circuits to model the constitutive re-
lationships is not discarded but it is not necessary, since
the state-equations can be obtained directly from nonlinear
differential equations. The state-variable technique is easily
incorporated into the TLM simulator without loss of generality.
A general procedure for linear differential equations shown in
[5] is outlined for a2 medium described by a fourth-order linear
differential equation

daif df &f | df
W‘detg) dtz +d +ef—g (27)
resulting in
:Ill(t) -6 1 0 07 :L‘l(t)
d |za(t)| _1{-c 0 1 0| |za(t)
gt |zs(t) | “a|-d 0 0 1] |zs(t)
x4(t) —e 0 0 0J Lzy(?)
000 07ro0
000 0o
Tloo o 9o (28)
00 0 —]lg®)
where z1(t) = f(1).
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The resulting equations can be solved either analytically
or numerically. The analytical solution of (28) would result
in a discretized convolution procedure, restricting the use
of the formulation to linear materials, since the convolution
procedure requires the linearity of the system. If the numer-
ical approach is used, several discretization schemes may be
chosen. However, there are two major schemes that are very
attractive, for reasons of stability and efficiency:

1) Backward Euler scheme [10]

2) Approximate Trapezoidal scheme (or first order Padé

approximant)

The first scheme introduces losses in the final result. but
there is no frequency shift, and it is very simple to implement.
The second scheme is far more precise than the former,
conserves energy and uses the same kind of discretization
as used in TLM, Therefore, for linear isotropic nondispersive
materials, the results given by this approach and usual TLM
are virtually indistinguishable.

Both schemes transform the continuous state equations

L0 = (Alle()] + [BYu(1)]
[y(£)] = [C[=(1)] + [D][u(t)] (29)
into the discretized form
[z(t + At)] = [Pllz(t)] + [Q][u(t)] + [R][z(t — At)]
[y(t + A1) = [Clle(t + AD)] + [D[u(t + Ab)].  (30)

The matrices [P], [(], and [R] will depend on the discretiza-
tion scheme

1) Backward Euler scheme:

(U] = AgAp~

(U] - At[A]) " At[B]

(0] (31)

[P
[
[

where [U] is the n x n identity matrix, and [0] is the
null matrix.
2) Approximate trapezoidal scheme:

=L
I

[P] = (V] - AdA) (0] + Atl4)
Q) =(0) - aay " £ip
[R] = (V] - adA) S (B] 62)

III. FORMULATION OF THE STATE-VARIABLE EQUATIONS

This section shows the implementation of the state-variable
equations for several kinds of media. The presented results are
the continuous state-variable equations.

A. Linear isotropic nondispersive medium

In this case

vs(t) =270 () = Zo(ppr — 1)2—Acl %i(t) + Z,.i(t)
is(t) =2Y, vl (t) = Yo(e, — 1)2% %vﬁ) +You(t) (33)

The state-variable form is

d Yre 2Y,.¢c -

TR i v e vy VAU vy pe 1yzar vt

d . Z.c 27,¢ .

'O ="z ear"™ Ttz — mzart -
(34)

The final equations are
i) =L o o] [i6]
[0 sl i o

where [U] is the 3 x 3 unitary matrix, [v(¢)] and [+(¢)] are
the vectors containing the voltages and currents in z,%y and

r

z, [vy(t)] and [v], ()] are the reflected voltages given by (20)
and

_ Y.c
“7 Yole, — 1)2A1

Zc

- Zo(pr — 1)2A0 (0

B. Linear isotropic dispersive medium

In the case of a dispersive dielectric medium modeled
by a first-order Debye approximation, the frequency domain
permittivity function is [11]

€s — €0

_ 37
1+ jwry 37

(W) = €00 +

The relationship between E and D in this dispersive material
will be modeled by the RC circuit shown in Fig. 4, with the
analogies

Cy =206 — 1) Ch = 2At(es — o)
70

e VA —
2At(€s — €00).
The state equation describing the circuit will be

d
;E[Uu] = [A] [”u] + [B] [Ueu]

L] = [Clfou] + [DJfos] (3%)
with
Y, 1 ) 1
(Y, L Y,
[A] — (Ol . RCy RCll [B] _ 2 g
"GRG
_ |1 o p1— v (1)
=] ©=t1 =[]
2] = (0] 39)

where w = z,y and 2, vy,aux(t) is an auxiliary variable used
in the state-equation description of the system, Y, is equal to
4 and v[,.v}, are the reflected and incident voltages at the
input port of the network in the « direction. Therefore for each
electric field component (x,y and z), a system of equations
(39) has to be solved.

The dispersion analysis of TLM using state-variable ap-
proach shows that the timestep should be at least At < 74/100

to obtain accurate results. If a small frequency shift is allowed
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the limit can be decreased to At < 74/20. This restriction
applies to backward Euler and approximate trapezoidal dis-
cretization. In the case of second order materials, [12], the
restriction is the same for the approximate trapezoidal case and
it is worse for the backward Euler case. This rule of thumb
for the discretization is valid as long as €, y, < 20.

C. Linear anisotropic nondispersive material

Considering the anisotropic material with nondiagonal ten-
sor

=[ 1E = ([] - [UDE
=[G|H = ([p] - [UDH (40)
where
(fmc €ry €xz Pez Hey Mz
e] = |eye €yy Cyz (b = | pye Hyy  Hyz
_621‘ ezy 622 l'l’ZIE Nzy I‘LZZ
1 0 0
wi=lo 1 0 1)
0 0 1
The constitutive state-equation is
Vg Ve
Uy Uy
d v, | _ [F]~1 [0] v,
Bt | = 4[ o (6] |ia
iy iy
1y %y
Vep
1[0
FI=t o] 71w,
[ 0] [G]*l} .| P
v,rny
Ve

This relationship is obtained directly from (40) and (41)
without the need for an equivalent circuit.

D. Nonlinear material
Consider the constitutive relationship of a nonlinear medium
P(t) = (e = DE(t) +1(E(t))® 3)
This is an example of a self-focusing material, because the
effective dielectric constant increases with the amplitude of the
wave. An electric field propagating in a waveguide loaded with
a dielectric strip with this constitutive relationship tends to be
more concentrated in the strip with increasing field values.
Above certain power levels one observes the formation of
spatial solitons in the guide.
The state-equation will be
Y,
Yo[(er — 1)2A1/c + 3vy(v(t))
2Y,
Yol(er — D2Al/c 1 3y(v(2)?]

d
%v(t) - ] (t)

+ vr(t) . (44)
IV. NUMERICAL RESULTS

This technique was validated by comparing SCN TLM
results for several materials:

Y(w)

0 O

Fig. 4. Equivalent circuit model of a first-order Debye dielectric.

Comparison of Results — WR28 waveguide

30

% 12 14 16 18 20
frequency (GHz)

Fig. 5. The cutoff frequency of a WR-28 waveguide filled with dielectric.
The frequency is obtained after a Fourier transform of the time domain
response of an impulsive excitation of a cavity with the dimension of the guide.
Results obtained with three different methods are compared. (a) stub-loaded
SCN-TLM. (b) State-variable equations (backward Euler discretization). (c)
State-variable equations (approximate trapezoidal discretization).

1) Comparison between cutoff frequency results obtained
for a dielectric-filled isotropic waveguide using state-
variable TLM and stub-loaded TLM. The example was
a WR-28 waveguide (7.112 mm by 3.556 mm, backed by
magnetic walls) with regular mesh with a discretization
of 24 x 12 x 4 filled with a dielectric with ¢, of 2.22. The
first dominant mode of the cavity has the same frequency
as the WR-28 guide. The results are shown in Fig. 5.

2) The calculation of the scattering parameters of a parallel
plate waveguide with an air/dispersive material junction.
The parallel plate waveguide was modeled by a mesh of
200 x 10 x 5 nodes (14.65 x 0.7325 x 0.36625 mm)
with the dielectric constant of ¢, = 1 as shown in Fig.
6. In the first case (Fig. 7), the dispersive dielectric was
modeled as a first order Debye medium with parameters

o = 1.8,6, = 10.0 and 79 = 9.4 x 10~'2 seconds. In
the second case (Fig. 8), the dielectric was modeled as
a second order Debye medium with €., = 20.0,¢, =
60.0, fo = 5 GHz and § = 0.3. Both results were
calculated using state-space equations discretized using
backward Euler scheme.

3) The calculation of the cutoff frequencies of a sapphire
filled WR-28 waveguide with the same discretization
used in the first example. The permittivity tensor is

(eucos? p +e,8in’ )  L(ey—e)sin2p 0

$(eu — €0)8in20  (€yc08% p + ey sin®p) 0
0 0 €,
(45)

=

where the dielectric was sapphire (¢, = 9.34

11.49), [8].

€y =
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TABLE I
COMPARISON OF ANALYTICAL AND CALCULATED RESULTS FOR THE SAPPHIRE EXAMPLE
Analytical Cutoff Frequency Axis Angle SCN-TLM Error (%)
6.2221 GHz 0° 6.21 GHz 0.19
6.5354 GHz 45° 6.57 GHz 0.53
6.9012 GHz 90° 6.90 GHz 0.02

Electric Walt

s EIFQCHON OF
Propagation

Fig. 6. Parallel plate waveguide half-filled with dispersive dielectric.

Reflection Coefficient
0.82 - v T

Magnitude
=] & =4
3 Q o
[=) o) [

14
9
PN

075 20 30 40 50
frequency (GHz)

Fig. 7. Scattering parameters from an air/dispersive dielectric transition.
Solid-line: exact result; dashed-line: result calculated with TLM. The max-
imum error over the whole frequency band is in the range of 0.4%,

The optical axis lies on the xy plane and was rotated by an
angle ¢ with respect to the = axis. The problem was calculated
for ¢ of 0°,45°, and 90° using backward Euler discretization.
The comparison between the exact and calculated results is
shown in Table I

V. CONCLUSION

The technique presented in this paper can be used for
modeling general constitutive relationships and requires few
modifications to a TLM program. A general description of
the medium relationships was obtained with equivalent node
sources and the state-variable approach. The technique was
validated by comparison with stub-loaded SCN results and

Reflection Coefficient

0 10 20 30 40 50
frequency (GHz)

Fig. 8. Scattering parameters from an air/dispersive dielectric transition.
Solid-line: exact result; dashed-line: result calculated with TLM. The RMS
error over the whole frequency band is in the range of 3.0% (with a maximum
of 6.0% at 36 GHz).

exact solutions for the anisotropic case. Good agreement was
observed in both cases.
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