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Modeling of General Constitutive

Relationships in SCN TLM
Leonardo R. A. X. de Menezes, Member; IEEE, and Wolfgang J. R. Hoefer, Fellow, IEEE

Abstract— The modeling of general constitutive relationships

in SCN (symmetrical condensed node) TLM is presented. The

technique consists of decoupling the impulse scattering at the
nodes from equations describing the medium by using equivalent
node sources with state-variable formulation of the constitutive

relationships. The procedure requires few modifications of TLM.

Numerical examples are presented.

I. INTRODUCTION

I

N THE BASIC TLM formulation, dielectric permittiv-

ity and magnetic permeability are modeled by open and

short circuited stubs which are connected to the nodes: the

characteristic admittance of the stubs is a function of the

constitutive parameters [1]. This method is very robust and

most appropriate when and are constants. However when the

material constitutive parameters are frequency dispersive and

nonlinear, the representation by hard-wired stubs becomes

computational difficult and uneconomical because a modi-

fication in time of the stub admittances leads to a modification

of the impulse scattering matrix of the node.

A better way is to decouple the impulse scattering at

the nodes from the equations describing the behavior of the

medium by representing the latter by a differential equation

or equivalent lumped element network and connecting it to

each node by a transmission line of infinitesimal length and

characteristic admittance equal to the driving point admittance

of the node [2]–[4].

The procedure presented in this paper is an efficient TLM

representation of arbitrary constitutive relationships. Using

decoupled scattering matrices with equivalent node sources

(Thevenin and Norton equivalents of the node), the constitutive

equations are expressed in a generic formulation allowing the

inclusion of arbitrary medium behavior in TLM models. The

resulting equations are solved with the state-variable approach.

II. THEORY

This section is divided into four parts. The first describes
the modeling of arbitrary dielectric and magnetic materials

in two-dimensional (2-D) shunt and series TLM networks. In

the second part, the method is extended to three-dimensional

(3-D) SCN TLM. In the third part, the networks describing

Manuscript received June 10, 1995; revised February 15, 1996. This work
was supported m part by the Bmzdlan Government agency Conselho National
de Pesquisa (CNPq),

The authors are with NSERCM4PR Teltech Research Chair in RF Engi-
neering, Department of Electrical and Computer Engineering, University of
Victoria, Victoria B .C , Canada,

Publisher Item Identifier S 001 8-9480(96)03804-5.

Vai

v2i

4 -(
v~r

&

Vli

—

I Circuit

__!-—

Fig, 1, Two-dimensional TLM shunt node N1,
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Fig. 2 Two-dimensional TLM shunt node N2

the medium behavior are formulated in terms of equivalent

node sources, and in the fourth part the resulting differential

equations are expressed and solved using the state-space

approach.

A. T>vo-Dimensiorzal TLM Formulation

General isotropic materials can be modeled in 2-D-TLM by

reactively loading each node of the network. As mentioned

above, the reactive load can be either modeled by a reactive

stub (Fig. 1) or by a reactive lumped element network (Fig.

2). The latter formulation will now be given for general

nondispersive linear media, for the sake of simplicity.

Since the characteristics of shunt and series-connected TLM

networks are related to each other by duality, we will only
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derive the formulation for the shunt case and simply state the

analogous results for the series case.

In the shunt connected TLM cell the reactive network across

the node models the polarization of the medium in the presence

of an electric field, and the current flowing through it is the

polarization current. The equations relating this current to the

electric field describe the dielectric response of the medium.

Maxwell’s second curl equation in two dimensions (t7/~y =

o)

is modeled by the shunt type 2-D-TLM network

a. a.——. —
a.z ax

= (2C, + Cp)q

with the equivalences

iZ ~ —Hz i. F Hz Vy G Ey

q G 2C0 er = 2C0 + q

(1)

as

(2)

where Co is the capacitance per unit length of the link lines.

For a square cell with Ax = Az = A/the total displacement

current is thus

id = id(J + iP = 2CoAl~ + CPAl~ (3)

where id is the total displacement current, ‘& is the displace-

ment current in vacuo and iP is the polarization current in the

medium.

The equivalence between

eoer = 60(1 + x) = 60[1 + (e, – 1)]

and

() Cp
2CCI+CP=2C0 l+—

2C0

yields with co = 2C0

Cp = 2C13X = 2co(er – 1)

obtaining for the polarization current in (3)

ip = 2CO(G – l)Al~, (4)

Furthermore

co = r~@F %_yoAt—
Al

(5)
c

where Lo and Y. are the inductance per unit length and the

characteristic admittance of the link lines, respectively, At is

the timestep, and c the speed of light (on the link lines). Hence

ip=z (1y(er-l)~ = 23$ ~ (6)

where pv is the normalized polarization

pv = Py/cl).

The shunt reactance connected to the node is usually de-

scribed by a current-voltage relationship. In order to connect

it with the scattering mechanism in the TLM network, the total

voltage and current across the reactance must be expressed in

terms of incident and reflected voltage impulses. To this end,

the shunt reactance is connected to the node via a transmission

line of infinitesimal length and characteristic admittance Y,, In

order to avoid multiple reflections on this line, Y. is matched

to the driving point admittance of the node, i.e. Y. = 4%,

where Y. is characteristic admittance of the link lines.

The voltage and current across the shunt reactance can thus

be related to the voltage impulses incident and reflected at the

node on this transmission line as follows:

‘ug = V:V + V:v

2P = 4YO(V;U – ?J:V).

The scattering matrix of the node is

[]”=+~ ~ :3 :J[

(7)

i

1
i

Vey

+
‘i&y

vev
(8)

vey

and the reflected voltage v& is calculated as

V:y = *(V; +Vj +V; +v~). (9)

Therefore, the incident voltage vjV used in (8) is calculated

using (9) with (7) and (6). “

In the series node case, the decoupled scattering matrix is

‘f i!il[l’

‘l& =(-v; +’?); +V: - Vj). (lo)

The current and voltage over the node are defined as

vmag(t) = ?&(t) + vi(t)

‘&(t) – ‘Q(t)
i(t) =

4zrl

and the magnetization vector is

()ZOA1 d
Vmag(t) = 2= ~m(t)

(11)

(12)

where (in the linear nondispersive case) m(t) = (~. –

l)i(t) is the normalized magnetization vector, v~.g (t) is the

magnetization voltage and v; (t), v: (t) are the reflected and

incident voltages at the input port of the network modeling

the magnetic behavior of the medium.
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B. Obtention of the SCNFormulation [6], with the same numbering scheme used in [7]

The SCN formulation is obtained by combining 2-D shunt ‘u; =V.(t)–zri. (t) – ‘&
and series nodes [6]. These nodes are decoupled from the

medium using the procedure described in Section II-A. The
v; =Vr(t) –Z.iv(t) –’q

resulting medium constitutive equations are w; = ‘u.(t) – Z.iv(t) – V:o

‘U$= Vv(t) + Zri. (t) – ‘V:l

(–)-=*YOA1 (@. ()ZOA1 dm,c
2— —

7);1 = I) V(t)– Zriz(t) – v:
‘Lpolz

dt
‘Umagz=

c c lit v: = 7Jv(t) + Zriz(t) – v:

p.(t) ==m: m.(~) = w:

‘u; = v.(t) + Zriz(t) – v;(t)

‘u; = v.(t) + Zrzy(t) – v;

‘vyo = v,(t) + Z?.zg(t) – v;

‘u; = v,(t) – Z,.iz(t) – v;

VJ = Vv(t) – Z?.i. (t) – v;

vy2 = Vx(t) + Z,’iz(t) – v;

(15)

(13)

the reflected voltages on branches 1–12 are calculated using

with Y,/ l’. = Z, /20 = 4 and

v.. (t) = (’v:(t) + ‘?&(t) + v:(t) + v;2(t))/4 + IJ:z(t)

‘uY(t) = (v:(t) + v:(t) + v;(t) + V:l (t))/4 + V:y(t)

v.(t) = (v:(t) + v:(t) + v;(t) + v;o(t))/4 + v:=(t)

iz(t) = (vi(t) – v:(t) + v+(t) – v;(t)) – v;z(t))/4

iv(t) = (v:(t) – ‘v;(t) + v:(t) – V:o(t)) – v;g(t))/4

Zz(t) = (V;(t) – V:(t) + ‘&(t) – ‘u:l(t)) – v~z(t))/4. (16)

The conditions (15) to (16) can be expressed in the system

[J’] = P’][J]+ +[dl [a= [q[v’] (17)

where, as shown in (18) and (19) at the bottom of the page,

and

and the subscript t denotes the transpose vector.

The reflected voltages v: and v: are calculated as follows:

v’ =:ex (v; + v: + v: + V;*) ‘&z = (vi – V; + 7$ – v;)

V;V = ;(V; +V: +v& +7):,) v~u = (v& - vj +vj - ‘&)

V:Z = ;(V: +V: +V$ + U;o) ‘l&z = (v; – v: –v;, +V;J.

(21)

[s] = +

01100000 10 –1 –2-

10000100 –2–101

10010001 00 –2 –1
001010 –l–2 o 0 1 0

000101 –2–1 o 1 0 0

01001010 –1–200
000–1–2101 0100

~

001 –2–1 o 1 0 0 0 1 0

1 –2000–1000 101

0 –1001–2101 000

10–210001 0001

21–100000 1010

11 1 0000001001 -

() o 1 1 00010010

001
[1’] = + :;O

11 0 0 100
1–101–10000

o –1 o 0 0 10 01–100
.1 0 –loo 00 0 0 0 1 –1_

(18)

(19)
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Fig. 3. Norton equivalent source of the node (dleleetric behavior).

The link between the incident and reflected vectors given

in (20) is obtained by (13) and (14).

C. The Equivalent Node Sources

The disadvantage of the substitution of (14) into (13) and

subsequent discretization of the resulting expression is the loss

of flexibility of the constitutive relationships modeling, since in

this approach the final discretized expression will be different

according to the medium equations. Therefore, it is important

to deduce a robust solution procedure that enables (13) to be

used independently of the constitutive equation. This is done

considering the Norton and Tbevenin circuit equivalent of the

node as sources connected to the networks.

The voltage and current on the input port of each network

can be expressed as

1) Shunt network

ipol(t) = 2Y.v:(t) – Yrv(t) v:(t) = v(t) – v;(t). (22)

2) Series network

Vmag(t) = 2zTv~(t) –Z,i(t) vi(t) = –(4i(t) –v~(t)).
(23)

These equations can be rearranged and substituted into (13)

resulting in

i.(t) = 2Y.vg(t) = Y02: -&t) + Kv(t)

‘v,(t) = 2z.w; (t) = zo2~ :Tn(t) + -zi(t). (24)

The representation of (24) in the equivalent circuit form for

the polarization is shown in Fig. 3.

Applying the same procedure to all directions, the equivalent

current sources are obtained from the polarization cument ipol

and the total voltage across the node v(t), while the equivalent

voltage sources are deduced from the magnetization voltage

v~ag and total current over the node i(t)

2Al d
isz (t) = 2YTv;Z (t) = 8&Z (t) = -j- z%(t) + 4vz(t)

2Al d
i.z (t) = 2Yrv;z (t) = 8W:Z (t) = ~ -#k (t) + 4vz(t)

win(t) = %v~z(~) = sv~a.(t) = y -&l.(t) + 4i.z(t)

2A1 d
z,,(t) = 2Zrv:z(t) = 8v;z(t) = ~ ~mz(t) + 4iz(t).

(25)

The sources are calculated at each timestep by

i.z(q = 2(vj(t) + v;(t) + vj(t) + ?&(t))

iv(t) = 2(wj(t) + Wj(t) + v~(t) + w:~(t))

i,,(t) = 2(vg(t) + T&t) + v+(t) + v~o(t))

W,Z(t) = 8(v~(t) – vj(t) + v;(t) – w;(t))

v.v(t) = 8(v:(t) – v;(t) + v:(t) – v;o(t))

vs.(t) = 8(vj(t) – vj(t) – v;z(t) + v:l(t)). (26)

The solution of (26), (25), and (15) will result in the re-

flected voltages in lines 1–12. The propagation between nodes

is not affected. The incident voltages (20) can be calculated

using the results from (25) substituted into (14). This procedure

is applicable to all kinds of constitutive relationships. The

adaptation to usual TLM programs, [7], is done by setting

Y. = YY = Y, = Z. = ZY = 2, = 4, obtaining the

reflected voltages for the stubs, using (25) and (14) to obtain

the incident voltages from the stubs, and then calculating the

reflected voltages in branches 1– 12 with the scattering matrix

(18).

D. The State-Variable Approach

The use of equivalent node sources allows the solution of

the network using nodal or Tableau analysis, [9]. Therefore,

a SPICE circuit simulator could be used to solve the network

at all nodes at each timestep. The problem of this approach

is the need to formulate an equivalent circuit of the medium.

Although this may be an easy task for most linear dispersive

isotropic materials, that is certainly not the case for an arbitrary

constitutive relationship.

However, the state-variable formulation of the constitutive

relationship equations avoids this problem. In this approach,

the use of equivalent circuits to model the constitutive re-

lationships is not discarded but it is not necessary, since

the state-equations can be obtained directly from nonlinear

differential equations. The state-variable technique is easily

incorporated into the TLM simulator without loss of generality.

A general procedure for linear differential equations shown in

[5] is outlined for a medium described by a fourth-order linear

differential equation

resulting in

mxl (t) –b 100

d ~2(t) = _1–CO1O

~$3(t)a–dOOl
LxA(t)J L-eooo

[0000

1
0000

+000”
f!

ooo–
a

where %l(t) = ,f(t).

[

xl(t)’

Xz(t)

x3(t)

x4 (t)

o

[1

o

0

g(t)

(28)
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The resulting equations can be solved either analytically

or numerically. The analytical solution of (28) would result

in a discretized convolution procedure, restricting the use

of the formulation to linear materials, since the convolution

procedure requires the linearity of the system. If the numer-

ical approach is used, several discretization schemes may be

chosen. However, there are two major schemes that are very

attractive, for reasons of stability and efficiency:

1) Backward Euler scheme [10]

2) Approximate Trapezoidal scheme (or first order Pad6

approximant)

The first scheme introduces losses in the final result, but

there is no frequency shift, and it is very simple to implement.

The second scheme is far more precise than the former,

conserves energy and uses the same kind of discretization

as used in TLM, Therefore, for linear isotropic nondispersive

materials, the results given by this approach and usual TLM

are virtually indistinguishable.

Both schemes transform the continuous state equations

-&t)] =[A][x-(t)] + [B][u(t)]

[Y(t)] = [c][:d~)]+ [~][u(~)] (29)

into the discretized form

[z(t + At)] = [P][z(t)]+ [Q][u(t)] + [R][dt - At)]

[Y(t+ ~~)1= [q[dt + At)] + [D][u(t+ At)]. (30)

The matrices [P], [Q], and [R] will depend on the discretiza-

tion scheme

1) Backward Euler scheme:

[F’] = ([u] - At[A])-’

[Q] = ([IV - At[A])-’At[B]
[R] = [0] (31)

where [U] is the n x n identity matrix, and [0] is the

null matrix.

2) Approximate trapezoidal scheme:

[P] = ([U] - At[A])-’([U] + At[.4])

[Q] = ([~1- WAl)-’$[~]

[R] =([LT] - At[A])-l~[l?. (32)

III. FORMULATION OF THE STATE-VARIABLE EQUATIONS

This section shows the implementation of the state-variable

equations for several kinds of media. The presented results are

the continuous state-variable equations.

A. Linear isotropic nondispersi~,e medium

In this case

‘u.(t) = 2zr’u~(t) = Zl)(p. – 1)2+ $i(t) + Zri(t)

The state-variable form is

I;c 2Yrc
:W(t) = –

Yo((=, – l)2Ai
u(t) +

Yo(Er – 1)2A1
‘u:(t)

z. c 2Z.C
:i(t) = –

Zo(pr – 1)2A1
z(t) +

Zo(~r – 1)2A1
‘u~(t).

(34)

The final equations are

where [u] is the 3 x 3 unitary matrix, [u(t)] and [z(t)] are

the vectors containing the voltages and currents in x, y and
z, [v;(t)] and [v;(t)] are the reflected voltages given by (20)

and

Y,c

a = Yo(c. – 1)2A1

~ = Z.c

Zo(yr – 1)2A1”
(36)

B. Linear isotropic dispersive medium

In the case of a dispersive dielectric medium modeled

by a first-order Debye approximation, the frequency domain

permittivity function is [11]

&s — &m
c,(w) = em +

1 + jwro “
(37)

The relationship between E and D in this dispersive material

will be modeled by the RC circuit shown in Fig. 4. with the

analogies

R=
To

2At(es – Em).

The state equation describing the circuit will be

:[WU]==[A][7JU] + [B][7J.U]

[u:u] = [c] [vu]+ [D] [V:u]

with

(1-)
1

g+—
[A] = - ~ RCI

RC2

[1
[c] = : [D] == [-I]

1

RC1
1-1

[B] =

(38)

[1

2g

o

[’L] = [v:u(~)l (39)

where u = z, v and z, v,,.uX(t) is an auxiliary variable used
in the state-equation description of the system, Y, is equal to

4 and v~U, v~U are the reflected and incident voltages at the

input port of the network in the u direction. Therefore for each

electric field component (z, y and z), a system of equations

(39) has to be solved.

The dispersion analysis of TLM using state-variable ap-

proach shows that the timestep should be at least At< ~o/ 100

to obtain accurate results. If a small frequency shift is allowed
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the limit can be decreased to At< To/20, This restriction

applies to backward Euler and approximate trapezoidal dis-

cretization. In the case of second order materials, [12], the

restriction is the same for the approximate trapezoidal case and

it is worse for the backward Euler case. This rule of thumb

for the discretization is valid as long as c., ,u. <20.

C. Linear anisotropic nondispersive material

Considering the anisotropic material with nondiagonal ten-

sor

P = [F]E = ([E] – [U])E

M = [G]H = ([p] - [U])H

[d=

The constitutive state-equation is

2@.t;

(40)

,4cx Pzy k?

/%/. PYY PYZ

p.. I&y p..

(41)

—

[

._J [FI-l [0]—
[0] [G]-l 1

11
v;%

Vg-g

[

_ ~ PT1 [0]
1[0] [G]-l ::z “ ’42)

VTmy
UTmz

This relationship is obtained directly from (40) and (41)

without the need for an equivalent circuit.

D. Nonlinear material

Consider the constitutive relationship of a nonlinem medium

P(t) = (Er – I)E(t) + -y(_E(t))3 (43)

This is an example of a self-focusing material, because the

effective dielectric constant increases with the amplitude of the

wave. An electric field propagating in a waveguide loaded with

a dielectric strip with this constitutive relationship tends to be

more concentrated in the strip with increasing field values.

Above certain power levels one observes the formation of

spatial solitons in the guide.

The state-equation will be

Y,:W =–Yo[(er - l)2A1/c + 37(v(t))2] ‘(t)

2YV

+ YO[(G- – l)2A1/c + 3~(v(t))2] ‘:(t) “ ’44)

IV. NUMERICAL RESULTS

This technique was validated by comparing SCN TLM

results for several materials:

Fig.

R

-1
0

I I

Y(fo) o & &c,

T
c,=

T

4. t@ivdent circuh model of a first-order Debye dielectric.

Comparison of Results – WR28 waveguide
30

20
J#

..,:,, !?). ,,, : .............

Fig. 5. The cutoff frequency of a WR-28 waveguide filled with dielectric.
The frequency is obtained after a Fourier transform of the time domain

response of an impulsive excitation of a cavity with the dimension of the guide.
Results obtained with three different methods are compared. (a) stub-loaded
SCN-TLM. (b) State-variable equations (backward Euler discretization). (c)
State-vruiable equations (approximate trapezoidat discretization).

1)

2)

3)

Comparison between cutoff frequency results obtained

for a dielectric-filled isotropic waveguide using state-

variable TLM and stub-loaded TLM. The example was

a WR-28 waveguide (7.112 mm by 3.556 mm, backed by

magnetic walls) with regular mesh with a discretization

of 24 x 12x 4 filled with a dielectric with c. of 2.22. The

first dominant mode of the cavity has the same frequency

as the WR-28 guide. The results are shown in Fig. 5.

The calculation of the scattering parameters of a parallel

plate waveguide with an airidispersive material junction,

The parallel plate waveguide was modeled by a mesh of

200 x 10 x 5 nodes (14.65 x 0.7325 x 0.36625 mm)

with the dielectric constant of G = 1 as shown in Fig.

6. In the first case (Fig. 7), the dispersive dielectric was

modeled as a first order Debye medium with parameters

em = 1.8,cS = 10,0 and To = 9.4 x 10–12 seconds. In

the second case (Fig. 8), the dielectric was modeled as

a second order Debye medium with Em = 20.0, es =

60.0, ~. = 5 GHz and 6 = 0.3. Both results were

calculated using state-space equations discretized using

backward Euler scheme.

The calculation of the cutoff frequencies of a sapphire

filled WR-28 waveguide with the same discretization

used in the first example. The permittivity tensor is

[

(cti COS2p + .sVsin2 p) +(cU - eV)sin2p O

[c] = ~(EU - e.) sin 2P (c. COS2v; eUsin2 q) O
0 1

(75)

where the dielectric was sapphire (EU = 9.34 6V =

11.49), [8].
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TABLE I

COMPARISONOF ANALYTICAL AND CALCULATED RESULTSFORTHE SAPPHU

II 1 1
Analytical Cutoff Frequency AxLs Angle SCN - TLM

6.2221 GHz 0° 6.21 GHz

6.5354 GHz 45° 6.57 GHz

6.9012 GHz 90° 6.90 GHz

Fig. 6, Parallel plate waveguide half-filled with dispersive dielectric,

Reflection Coefficient
0.82

0.8 ,,,,,, ,,.,’,, ,,,,,, ,,, ,,,,,, ,,,,.,, ,,, ,,,,,, ,,,,:,,,, ,

.=
g

0.720
10 40

fr~~uenc y (~J!?iz)
50

Fig. 7, Scattering parameters from an air/dispersive dielectric transition.

Solid-line: exact result; dashed-line: result calculated with TLM. The max-
imum error over the whole frequency band is in the range of 0.4%,

The optical axis lies on the xy plane and was rotated by an
angle p with respect to the z axis. The problem was calculated

for p of 0°,45°, and 90° using backward Euler discretization.

The comparison between the exact and calculated results is

shown in Table I.

V. CONCLUSION

The technique presented in this paper can be used for

modeling general constitutive relationships and requires few

modifications to a TLM program. A general description of

the medium relationships was obtained with equivalent node

sources and the state-variable approach. The technique was

validated by comparison with stub-loaded SCN results and

z EXAMPLE

4
Error (%)

0.19

0.53

0.02

,,, ,.,,..

., ...,...,

10 20 zn 40 50
fr=qiency (GHz) “-

“Fig, 8. Scattering parameters from au air/dispersive dielectric transition.

Solid-liue: exact result; dashed-line: result calculated with TLM. The RMS
error over the whole frequency band is in the range of 3.0% (with a maximum

of 6.0% at 36 GHz).

exact solutions for the anisotropic case. Good agreement was

observed in both cases.
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